Kruskal 最小生成树算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int MAX_N = 100000; // 最大顶点数
const int MAX_M = 100000; // 最大边数

struct edge {
int u, v, w;
}e[MAX_M];

int fa[MAX_N], n, m; // fa 数组记录了并查集中结点的父亲

bool cmp(edge a,edge b) {
return a.w < b.w;
}

// 并查集相关代码
int ancestor(int x) { // 在并查集森林中找到 x 的祖先,也是所在连通块的标识
if(fa[x] == x) return fa[x];
else return fa[x] = ancestor(fa[x]);
}
int same(int x, int y) { // 判断两个点是否在一个连通块(集合)内
return ancestor(x) == ancestor(y);
}
void merge(int x, int y) { // 合并两个连通块(集合)
int fax = ancestor(x), fay = ancestor(y);
fa[fax] = fay;
}

int main() {
scanf("%d%d", &n, &m); // n 为点数,m 为边数
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w); // 用边集数组存放边,方便排序和调用
}
sort(e + 1, e + m + 1, cmp); // 对边按边权进行升序排序
for (int i = 1; i <= n; i++) {
fa[i] = i;
}
int rst = n, ans = 0; // rst 表示还剩多少个集合,ans 保存最小生成树上的总边权
for (int i = 1; i <= m && rst > 1; i++) {
int x = e[i].u, y = e[i].v;
if (same(x, y)) {
continue; // same 函数是查询两个点是否在同一集合中
} else {
merge(x, y); // merge 函数用来将两个点合并到同一集合中
rst--; // 每次将两个不同集合中的点合并,都将使 rst 值减 1
ans += e[i].w; // 这条边是最小生成树中的边,将答案加上边权
}
}
printf("%d\n", ans);
return 0;
}
本站文章除注明转载外均为原创,未经允许不要转载哇. ヾ(゚ー゚ヾ) http://chicago01.top/2019/05/14/kruskal-zui-xiao-sheng-cheng-shu-suan-fa/index.html
Compartir